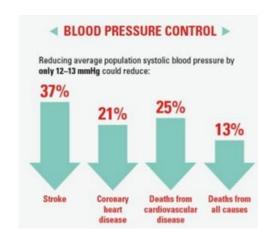
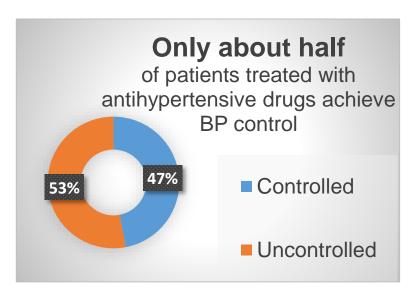
Hypertension /Blood Pressure Signature Genes and BP Response to Thiazide Diuretics: Results from PEAR and PEAR-2 Studies

Sá ACC, Webb A, Gong Y, Shahin MH, McDonough CW, Langaee TY, Turner ST, Beitelshees AL, Chapman AB, Boerwinkle E, Gums JG, Scherer S, Cooper-DeHoff RM, Sadee W, Johnson JA

> Ana Caroline C. Sá, BPharm, MSc Genetics & Genomics PhD Program, Genetics Institute Center for Pharmacogenomics Pharmacotherapy & Translational Research College of Pharmacy, University of Florida


Hypertension (HTN) and Blood Pressure (BP) Control


Most common medical condition among American adults

1 in every 3 US adults

Contributes to ~1,000 deaths/day

cdc.gov/bloodpressure/infographic

Roger VL et al. Circulation. 2012. 125: 188-197.

Materson BJ. The Am J Med. 2007;120:S10-20 Materson BJ, et al. NEJM 1993;328:914-21 34 BP signature genes explain ~ 9% of BP variability

Hypothesis

Genes associated with BP/HTN are also associated with BP response to **thiazide diuretics**

Study Objective

To identify **genes differentially expressed** in responders and non-responders to **thiazide diuretics**, based on the selected panel of BP signature genes

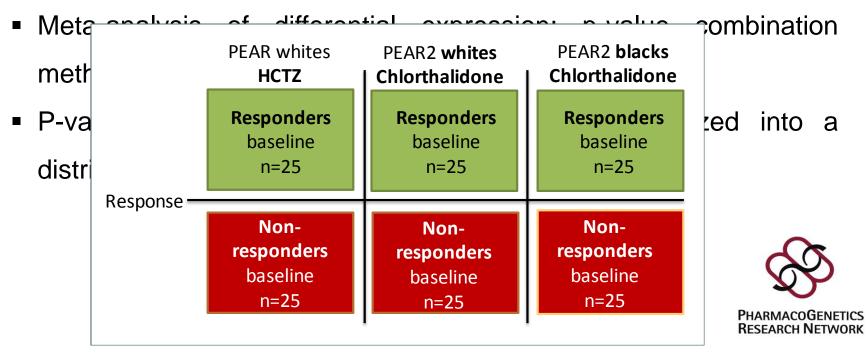
Uwe Völker^{12,31}*, Joyce B. J. van Meurs^{7,8}*, Luigi Ferrucci³⁵*, Daniel Levy^{1,2}*

PLOS Genetics | DOI:10.1371/journal.pgen.1005035 March 18, 2015

Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR)

Prospective, randomized, multicenter clinical trials

Examining the role of genetic variability on BP response to **thiazides** and/or β -blocker



PEAR: HCTZ PEAR2: Chlorthalidone

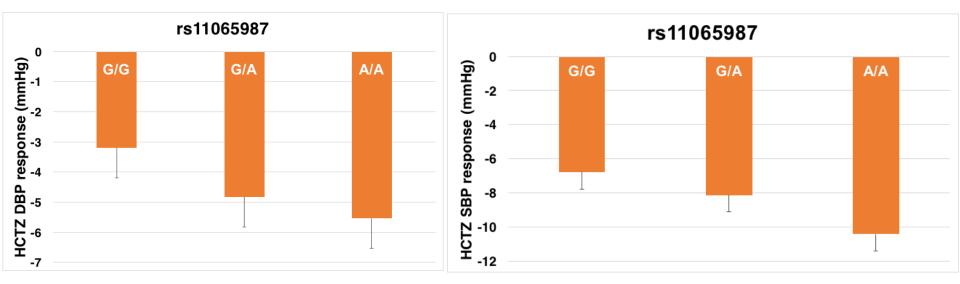
Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR)

- RNA sequencing (Illumina HiSeq) in whole blood samples from 150
- •HTM participants NA-Seq reads aligned to the human reference
- Sample selection it dans of BP response to thiazides (HCTZ and
- chomparisone)in gene expression abundances by Cufflinks / Cuffdiff

Results

At 5 % false discover rate (FDR), we identified 12 genes that were differentially expressed in relation to thiazide diuretics BP response in one of the 3 groups

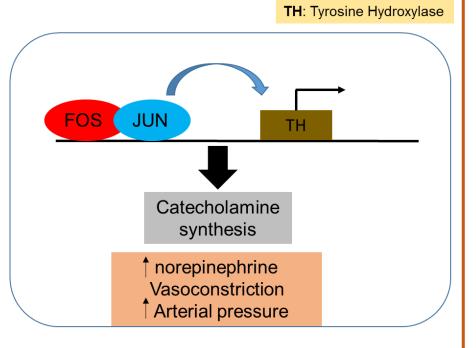
HCTZ whites


		нстг	whites	Chlorthalid	lone Whites	Chlorthalic	Meta-analysis				
		Fold		Fold		Fold					
Gene	Chr.	Change	P value	Change	P value	Change	P value	P value			
FOS	14	1.3	2.90E-03	1.29	1.15E-03	1.46	5.00E-05	2.08E-12			
DUSP1	5	1.4	1.50E-04	1.30	1.35E-03	1.29	3.55E-03	9.50E-12			
PPP1R15A	19	1.3	1.15E-03	1.19	3.61E-02	1.29	1.75E-03	3.64E-08			

Chicken Chicken TAGLINZ All gene expression measurements (12 RKM) 9424 Fold change: responders (FPKM)/ non-responders FPKM)

whites

FOS and PPP1R15A trans eQTLs


	В				PEAR whites participants								
	FOS		PPP1R15A					HCTZ	DBP	response	HCTZ	SBP	response
SNP	Z-score	P value	Z-score	P value	A1	A2	MAF	β	SE	Р	β	SE	Р
rs11065987	-5.43	5.60E-08	-4.68	2.81E-06	А	G	0.54	-1.4	0.5	0.002926	-2.1	0.7	0.001788

*Westra et al. Nature Genetics 2013 45, 1238–43

Discussion

- Expression of FOS: neuronal activation of vasomotor areas
- Blockade of FOS expression attenuates high BP in HTN induced and spontaneously HTN mice

Minson *et al*. Hypertension. 1996; 27: 433-41 Rao *et al*. Circulation. 2007; 116: 993–1006

- PPP1R15A and DUSP1: no direct evidence of involvement in HTN or thiazides BP regulation
- DUSP1 inhibits ERK signaling *in vitro* potential effect on angiotensin IImediated vasoconstriction
- PPP1R15A: regulatory subunit of PP1 may activate myosin light chain kinase (MLCK), leading to vasoconstriction
- Future studies with mouse models or Induced Pluripotent Stem Cells (iPSCs)

*ERK: Extracellular Regulated Kinase Touyz RM, et al. J Hypertens. 2002;20(6):1127-34 Huveneers *et al.* Circ Res. 2015; 116: 895-908

Conclusion & Future Directions

- This study reveals differences in FOS, DUSP1 and PPP1R15A gene expression underlying thiazides BP response, and provides insights into new potential mechanisms involved in BP regulation
- Conduct functional studies to further investigate the potential role of these genes in the mechanisms for thiazides BP regulation

Acknowledgements

UNIVERSITY OF FLORIDA

- Julie A. Johnson, PharmD
- Rhonda M. Cooper-DeHoff, PharmD, MS
- John G. Gums, PharmD
- Yan Gong, PhD
- Taimour Y. Langaee, PhD
- Caitrin W. McDonough, PhD
 MAYO CLINIC
- Stephen T. Turner, MD
- Kent R. Bailey, PhD

EMORY UNIVERSITY

Arlene B. Chapman, MD

UNIVERSITY OF TEXAS AT HOUSTON

- Eric Boerwinkle, PhD
- Zhiying Wang, MS

UNIVERSITY OF MARYLAND

 Amber L. Beitelshees, PharmD, MPH

BAYLOR COLLEGE OF MEDICINE

Steve Scherer, PhD

OHIO STATE UNIVERSITY

- Wolfgang Sadee, Dr.rer.nat.
- Amy Webb, PhD
- Danxin Wang, PhD
- Audrey Papp, B.S

Funding:

- PGRN U01 GM074492
- NIGMS RC2-GM092729
- CTSA (NIH NCATS : UL1 TR000064, UL1 TR000454, UL1 TR000135)